Food deprivation alters thermoregulatory responses to lipopolysaccharide by enhancing cryogenic inflammatory signaling via prostaglandin D2.
نویسندگان
چکیده
We tested the hypothesis that food deprivation alters body temperature (T(b)) responses to bacterial LPS by enhancing inflammatory signaling that decreases T(b) (cryogenic signaling) rather than by suppressing inflammatory signaling that increases T(b) (febrigenic signaling). Free-feeding or food-deprived (24 h) rats received LPS at doses (500 and 2,500 microg/kg iv) that are high enough to activate both febrigenic and cryogenic signaling. At these doses, LPS caused fever in rats at an ambient temperature of 30 degrees C, but produced hypothermia at an ambient temperature of 22 degrees C. Whereas food deprivation had little effect on LPS fever, it enhanced LPS hypothermia, an effect that was particularly pronounced in rats injected with the higher LPS dose. Enhancement of hypothermia was not due to thermogenic incapacity, since food-deprived rats were fully capable of raising T(b) in response to the thermogenic drug CL316,243 (1 mg/kg iv). Neither was enhancement of hypothermia associated with altered plasma levels of cytokines (TNF-alpha, IL-1beta, and IL-6) or with reduced levels of an anti-inflammatory hormone (corticosterone). The levels of PGD(2) and PGE(2) during LPS hypothermia were augmented by food deprivation, although the ratio between them remained unchanged. Food deprivation, however, selectively enhanced the responsiveness of rats to the cryogenic action of PGD(2) (100 ng icv) without altering the responsiveness to febrigenic PGE(2) (100 ng icv). These findings support our hypothesis and indicate that cryogenic signaling via PGD(2) underlies enhancement of LPS hypothermia by food deprivation.
منابع مشابه
Prostaglandin riddles in energy metabolism: E is for excess, D is for depletion. Focus on "Food deprivation alters thermoregulatory responses to lipopolysaccharide by enhancing cryogenic inflammatory signaling via prostaglandin D2".
THIS EDITORIAL FOCUS FEATURES A paper by Krall et al. (12) from the laboratories of two young investigators at Albany (New York) College of Pharmacy: Alex Steiner and Carlos Feleder. Both have already published their first independent studies (32, 37, 38), and their collaborative work highlighted herein continues this series of exciting projects and expands it to study the central mechanisms of...
متن کاملEupafolin ameliorates lipopolysaccharide-induced cardiomyocyte autophagy via PI3K/AKT/mTOR signaling pathway
Objective(s): Eupafolin, a major active component of Eupatorium perfoliatum L., has anti-inflammatory and anti-oxidant properties. Lipopolysaccharide (LPS) is responsible for myocardial depression. A line of evidences revealed that LPS induces autophagy in cardiomyocytes injury. This study aims to evaluate the effects of eupafolin on LPS-induced cardiomyocyte autophagy...
متن کاملThe role of cyclooxygenase-1 and cyclooxygenase-2 in lipopolysaccharide and interleukin-1 stimulated enterocyte prostanoid formation.
Lipopolysaccharide is an inflammatory agent and interleukin-1 is a cytokine. Their pro-inflammatory effects may be mediated by prostanoids produced by inducible cyclooxygenase-2. The aim of this study was to determine the prostanoids produced by lipopolysaccharide and interleukin-1 stimulated enterocytes through the cyclooxygenase-1 and 2 pathways. Cultured enterocytes were stimulated with lipo...
متن کاملInterferon Potentiates Toll-Like Receptor-Induced Prostaglandin D2 Production through Positive Feedback Regulation between Signal Transducer and Activators of Transcription 1 and Reactive Oxygen Species
Prostaglandin D2 (PGD2) is a potent lipid mediator that controls inflammation, and its dysregulation has been implicated in diverse inflammatory disorders. Despite significant progress made in understanding the role of PGD2 as a key regulator of immune responses, the molecular mechanism underlying PGD2 production remains unclear, particularly upon challenge with different and multiple inflammat...
متن کاملUteroglobin Represses Allergen-induced Inflammatory Response by Blocking PGD2 Receptor–mediated Functions
Uteroglobin (UG) is an antiinflammatory protein secreted by the epithelial lining of all organs communicating with the external environment. We reported previously that UG-knockout mice manifest exaggerated inflammatory response to allergen, characterized by increased eotaxin and Th2 cytokine gene expression, and eosinophil infiltration in the lungs. In this study, we uncovered that the airway ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Regulatory, integrative and comparative physiology
دوره 298 6 شماره
صفحات -
تاریخ انتشار 2010